On Noncommutative and semi-Riemannian Geometry

نویسنده

  • Alexander Strohmaier
چکیده

We introduce the notion of a semi-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of semiRiemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative semi-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Kreinselfadjoint. We show that the noncommutative tori can be endowed with a semi-Riemannian structure in this way. For the noncommutative tori as well as for semi-Riemannian spin manifolds the dimension, the signature of the metric, and the integral of a function can be recovered from the spectral data. Mathematics Subject Classification (2000): 58B34, 58B99, 46C20, 53C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Spectral Geometry of Riemannian Foliations: Some Results and Open Problems

We review some applications of noncommutative geometry to the study of transverse geometry of Riemannian foliations and discuss open problems.

متن کامل

Riemannian manifolds in noncommutative geometry

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré ...

متن کامل

Some Noncommutative Geometric Aspects of Su Q (2)

We study the 3D-calculus on SUq(2) (c.f. [W1]) from the point of view of noncommutative Riemannian geometry as formulated in [F1]. In particular, we show how we can obtain the Haar state from the ”Laplacian” on SUq(2) using a formula very similar to what is used in [F1] but with an appropriate modification. Furthermore, we recast the 3D-calculus along the line of [F1], showing that the complex ...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006